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Part Three: Advanced Sequential Monte Carlo

3.1 Mixture Kalman Filter

3.1.1 Conditional Dynamic Linear Models

3.1.2 Mixture Kalman Filters

3.1.3 Partial Conditional Dynamic Linear Models

3.1.4 Extend Mixture Kalman Filters

3.1.5 Future Directions

3.2 Constrained SMC

3.3 Parameter Estimation in SMC

3.4 Look-Ahead Strategies
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3.4.1. The principle of lookahead

• Dynamic systems often process strong ’memory’

• Future observations can reveal substantial information on the

current state

• Slight delay is tolerable

Make inference on the state xt at time t+d, based on observations

y1, . . . , yt, yt+1, . . . , yt+d.
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If ĥt+d is a consistent MC estimator of E(h(xt) | yt+d), then

E
[
ĥt+d − h(xt)

]2

= E
[
ĥt+d − E(h(xt) | yt+d)

]2

+E [E(h(xt) | yt+d)− h(xt)]
2

• The first term goes to zero with as MC sample size increases

• [Proposition] The second term decreases as d increases

• When MC sample size is sufficiently large, the first term is

negligible comparing to the second term, then longer looka-

head (larger d) always improves efficiency

• With limited sample size and limited computational time,

lookahead may not always be more efficient.
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3.4.2. Lookahead algorithms

(1) Exact lookahead weighting

If: (x
(j)
t+d, w

(j)
t+d) is properly weighted w.r.t. p(xt+d | yt+d)

then: (x
(j)
t , w

(j)
t+d) is properly weighted w.r.t. p(xt | yt+d).

Hence, inference on xt can be made using (x
(j)
t , w

(j)
t+d), with con-

current SMC.

• Sample of xt is drawn at time t, based on yt, with weight wt

• Inference on xt is made at time t + d, with weight wt+d;

—– wt+d is based on yt+d and samples of (xt, xt+1, . . . , xt+d).

E(h(xt) | yt+d) ≈
∑m

j=1 h(x
(j)
t )w

(j)
t+d∑m

j=1 w
(j)
t+d
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In fact:

w
(j)
t+d = w

(j)
t−1

πt+d(x
(j)
t+d)

πt−1(x
(j)
t−1)

∏t+d
s=t gs(x

(j)
s | x(j)

s−1, ys)

An improved version (if practical) is to use

w̃
(j)
t+d = w

(j)
t−1

πt+d(x
(j)
t )

πt−1(x
(j)
t−1)gt(x

(j)
t | x(j)

t−1, yt)

where πt+d(x
(j)
t ) =

∫
πt+d(x

(j)
t , xt+1, . . . , xt+d)dxt+1 . . . dxt+d

[Proposition]:

V ar [wt+d | yt+d] ≥ V ar [w̃t+d | yt+d]

and

V ar [wt+dh(xt) | yt+d] ≥ V ar [w̃t+dh(xt) | yt+d]

8



(2) Exact Lookahead Sampling

• New target distribution: π∗t (xt) = p(xt | yt+d)

• — recall: concurrent target distribution: πt(xt) = p(xt | yt)

• Sample xt based on a trial distribution that uses the full in-

formation yt+d

In particular, we can use

gt(xt | x(j)
t−1) = p(xt | x(j)

t−1, yt+d)

=

∫
p(xt, xt+1, . . . , xt+d | x(j)

t−1, yt+d)dxt+1 . . . xt+d

Then

w
∗(j)
t ∝ w

∗(j)
t−1

π∗t (xt)

π∗t−1(xt−1)gt(xt | xt−1)
= w

∗(j)
t−1

p(xt−1 | yt+d)

p(xt−1 | yt+d−1)
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We compare the (improved) exact lookahead weighting with the

exact lookahead sampling methods:

Suppose at time t, (x
(j)
t , w

(j)
t ) properly weighted w.r.t. πt(xt) =

p(xt | yt).

[Proposition]

V ar[w̃t+d | yt+d] ≥ V ar[w∗
t | yt+d]

and

V ar[w̃t+dh(xt) | yt+d] ≥ V ar[w∗
t h(xt) | yt+d]

However: Excessive computing cost
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(3) Pilot lookahead sampling:

• Full exploration of future space is too expensive

• Pilots can be used to partially explore the future space

• Limited numbers of pilots are able to obtain useful future

information with low computational cost

Specifically,

• Suppose xt takes J possible values {a1, . . . , aJ}
• Starting with each possible xt = ai, propagate to xt+d with

concurrent SMC with optimal sampling distribution.

• Obtain pilot incremental weight for each pilot

• Sample xt from {a1, . . . , aJ} according to pilot incremental weight

• Update weight
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More specifically

• For each x
(j)
t−1 and each ai,

• generate xt+1, . . . , xt+d from
t+d∏

s=t+1

πs(xs | x(j)
t−1, ai, xt+1, . . . , xs−1)

• Obtain the pilot incremental weight

U
(i,j)
t =

πt+d(x
(j)
t−1, xt = ai, x

(i,j)
t+1 , . . . , x

(i,j)
t+d )

πt−1(x
(j)
t−1)

∏t+d
s=t+1 πs(x

(i,j)
s | x(j)

t−1, xt = ai, x
(i,j)
t+1 , . . . , x

(i,j)
s−1)

• sample x
(j)
t from {a1, . . . , aJ} with probability

gt(xt = ai | x(j)
t−1) =

U
(i,j)
t∑J

k=1 U
(k,j)
t

• New weight

w
(j)
t = w

(j)
t−1

πt(x
(j)
t )

πt−1(x
(j)
t−1)gt(xt = x

(j)
t | xt−1)
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Note:

• (xt, wt) is properly weighted w.r.t p(xt | yt).

• even though sampling is done with future information

• Inference using (xt, wt) is not efficient
∑

h(x
(j)
t )w

(j)
t∑

w
(j)
t

≈ E(h(xt) | yt)

Remedies:

• To make inference on xt at time t+d, calculate

w
∗∗(j)
t+d = w

(j)
t−1

J∑
i=1

U
(i,j)
t

• Then (x
(j)
t , w

∗∗(j)
t+d ) is properly weighted w.r.t. p(xt | yt+d).

• To make inference on xt at time t+d, use (x
(j)
t , w

∗∗(j)
t+d )
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Further improvement: Multi-pilot lookahead sampling: using

multiple pilots per ai.

Comparison with exact lookahead sampling:

[Proposition]

0 ≤ V ar(w∗∗
t )− V ar(w∗

t ) ∼ O(1/K)

where K is number of pilots per ai and w∗
t is the weight of exact

lookahead sampling.

Recall:

V ar(w∗
t ) ≥ V ar(w̃t)

where w̃t is the weight of improved delay weighting algorithm.
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Deterministic pilot lookahead

• Pilots need not be random

• A better pilot might be the path that maximize

πt+d(xt+1, . . . , xt+d | x(j)
t−1, xt = ai)

• The true maximum is too expensive to get

• A greedy sequential search: for s = t + 1, . . . , t + d

x(i,j)
s = arg max

xs
πs(xs | x(j)

t−1, xt = ai, x
(i,j)
t+1 , . . . , x

(i,j)
s−1)

•
gt(xt = ai | x(j)

t−1) ∝
πt+d(x

(j)
t−1, xt = ai, x

(i,j)
t+1 , . . . , x

(i,j)
t+d )

πt−1(x
(j)
t−1)

• Often, the samples are better than (random) one-pilot looka-

head sampling.
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(4) Adaptive Sampling

• Sample from a simple trial distribution when information is

strong.

• Sample from a better trial distribution (e.g. lookahead) when

information is weak.

Recall:

E
[
ĥt+d − h(xt)

]2

= E
[
ĥt+d − E(h(xt) | yt+d)

]2

+E [E(h(xt) | yt+d)− h(xt)]
2

With finite MC samples, the first term may increase as d in-

creases.
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Exact lookahead weighting: comparing t + d− 1 and t + d

ĥ =
1

m

m∑
j=1

w
(j)
t+d−1h(x

(j)
t ) → E(h(xt) | yt+d−1)

h̃ =
1

m

m∑
j=1

w
(j)
t+dh(x

(j)
t ) → E(h(xt) | yt+d)

[Proposition]: when

E
[
V ar

(
h̃ | x(1:m)

t+d−1, yt+d−1

)
| yt+d−1

]
≥ 2V ar [E (h(xt) | yt+d) | yt+d−1]

we have

E

[(
ĥ− h(xt)

)2

| yt+d−1

]
≥ E

[(
h̃− h(xt)

)2

| yt+d−1

]
.
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Remarks:

• When p(xt | yt+d−1) = p(xt | yt+d), the result holds.

• In general, the condition is difficult to check

• Instead, we check if the information is strong:

– Specifically, iteratively try d = 1, 2, . . . , dmax. Stop when

maxi0

{
π̂t+d(xt = ai0)

}
.
= maxi0

{∑
j w

(j)
t−1U

(i0,j)
t∑

i,j w
(j)
t−1U

(i,j)
t

}
> p0,

for p0 > 0 but close to 1. (discrete state space)
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Other applications:

• Multi-target tracking in clutter

• Self-avoiding walks modelling protein structure

• Generating samples of diffusion bridges

• Signal processing in more complex fading channels
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